题意:第一眼看到这个题目就觉得神题。...其实题目给的s[i]根本不用管...总共有n个结点,包括发电站np、用户nc和调度器n-np-NC有三个节点和M条电线(用于传输电流)。每个发电站都有最大的发电量,每个用户都有最大的接收电量。现在有一个m条和一个最大的电流,说最多能流出这么多电,现在从发电站发电到用户,问最多能发多少电(被用户接受).
思路:构图:构图:
建立超级源s,s到任何发电站i有(s,i,,p[i]) (说明发电站最多能发p[i]电)
建立超级汇点t,任何用户j到t有边(j,t,c[j]) (表示用户最多可以消耗C[j]电)
然后是标题中描述的M条电线(u,v)L, 就有边(u,v,L).
最后,我们可以寻求本图的最大流量.(汇点t的最大流量是所有用户能消耗的最大功率)
#include <cstdio>#include <queue>#include <cstring>#include <iostream>#include <cstdlib>#include <algorithm>#include <vector>#include <map>#include <string>#include <set>#include <ctime>#include <cmath>#include <cctype>using namespace std;#define maxn 550#define INF 1e9#define LLINF 1LL<<60#define LL long longint cas=1,T;struct Edge{int from,to,cap,flow;Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}};int n,m;struct Dinic{//int n,m; int s,t;vector<Edge>edges; ////边数的两倍vector<int> G[maxn]; ///邻接表,G[i][j]e数组中的序号bool表示结点i的第j条边 vis[maxn]; ///BFS使用int使用int d[maxn]; ////从起点到int的距离 cur[maxn]; ////当前弧下标void init(){ for (int i=0;i<=n+1;i++) G[i].clear(); edges.clear();}void AddEdge(int from,int to,int cap){edges.push_back(Edge(from,to,cap,0));edges.push_back(Edge(to,from,0,0)); ///反向弧int mm=edges.size();G[from].push_back(mm-2);G[to].push_back(mm-1);}bool BFS(){memset(vis,0,sizeof(vis));queue<int>q;q.push(s);d[s]=0;vis[s]=1;while (!q.empty()){int x = q.front();q.pop();for (int i = 0;i<G[x].size();i++){Edge &e = edges[G[x][i]];if (!vis[e.to] && e.cap > e.flow){vis[e.to]=1;d[e.to] = d[x]+1;q.push(e.to);}}}return vis[t];}int DFS(int x,int a){if (x==t || a==0)return a;int flow = 0,f;for(int &i=cur[x];i<G[x].size();i++){Edge &e = edges[G[x][i]];if (d[x]+1 == d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow)))>0){e.flow+=f;edges[G[x][i]^1].flow-=f;flow+=f;a-=f;if (a==0)break;}}return flow;}int Maxflow(int s,int t){this->s=s;this->t=t;int flow = 0;while (BFS()){memset(cur,0,sizeof(cur));flow+=DFS(s,INF);}return flow;}}dc;int main(){int np,nc,m;while (scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF){dc.init();for (int i = 0;i<m;i++){int u,v,w;scanf(" (%d,%d)%d",&u,&v,&w); ++u,++v;dc.AddEdge(u,v,w);}for (int i = 0;i<np;i++){int u,w;scanf(" (%d)%d",&u,&w);++u;dc.AddEdge(0,u,w);}for (int i = 0;i<nc;i++){int u,w;scanf(" (%d)%d",&u,&w);++u;dc.AddEdge(u,n+1,w);}printf("%d\n",dc.Maxflow(0,n+1));}//freopen("in","r",stdin); //printf("time=%.3lf",(double)clock()/CLOCKS_PER_SEC);return 0;}
Description
A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= p max(u) of power, may consume an amount 0 <= c(u) <= min(s(u),c
max(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= l
max(u,v) of power delivered by u to v. Let Con=Σ
uc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.
An example is in figure 1. The label x/y of power station u shows that p(u)=x and p
max(u)=y. The label x/y of consumer u shows that c(u)=x and c
max(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and l
max(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.
Input
There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of l max(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of p max(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of c max(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.
Output
For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.
Sample Input
2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)207 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7 (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5 (0)5 (1)2 (3)2 (4)1 (5)4
Sample Output
156
Hint
The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.