当前位置: 首页 > 图灵资讯 > 技术篇> java框架如何处理流式处理?

java框架如何处理流式处理?

来源:图灵教育
时间:2024-08-08 15:36:13

java 框架支持高效流式处理,包括:apache kafka(消息队列吞吐率高,延迟率低)apache storm(实时计算框架并行处理,高容错)apache flink(支持低延迟和状态管理的统一流和批处理框架)

java框架如何处理流式处理?

Java 流式框架处理

对于构建实时分析、监控和事件驱动的应用程序来说,流式处理涉及到大量实时处理流入的数据。Java 该框架为高效处理流式数据提供了以下功能:

1. Apache Kafka

立即学习“Java免费学习笔记(深入);

Apache Kafka 在高吞吐率和低延迟的情况下,存储和处理流数据是一个分布式消息队列框架。它提供:

  • 数据分区
  • 负载平衡
  • 容错能力

代码示例:

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

public class KafkaConsumerExample {

  public static void main(String[] args) {
    Properties properties = new Properties();
    properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
    properties.put(ConsumerConfig.GROUP_ID_CONFIG, "test-group");

    Consumer<String, String> consumer = new KafkaConsumer<>(properties);
    consumer.subscribe(Arrays.asList("test-topic"));

    while (true) {
      ConsumerRecords<String, String> records = consumer.poll(1000);
      for (ConsumerRecord<String, String> record : records) {
        System.out.printf("Received key: %s, value: %s\n", record.key(), record.value());
      }
    }
  }
}

2. Apache Storm

Apache Storm 用于处理大规模、低延迟数据流的分布式实时计算框架。它提供:

  • 并行处理
  • 高容错能力
  • 可扩展性

代码示例:

import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.TopologyBuilder;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;

public class StormTopologyExample {

  public static void main(String[] args) throws Exception {
    TopologyBuilder builder = new TopologyBuilder();

    builder.setSpout("spout", new WordSpout(), 1);
    builder.setBolt("count-bolt", new WordCountBolt(), 1)
      .shuffleGrouping("spout");

    Config config = new Config();
    config.setDebug(true);

    LocalCluster cluster = new LocalCluster();
    cluster.submitTopology("test-topology", config, builder.createTopology());
    Thread.sleep(10000);
    cluster.shutdown();
  }

  public static class WordSpout extends BaseRichSpout {
    private SpoutOutputCollector collector;
    private String[] words = {"hello", "world", "this", "is", "a", "test"};

    @Override
    public void open(Map<String, Object> conf, TopologyContext context, SpoutOutputCollector collector) {
      this.collector = collector;
    }

    @Override
    public void nextTuple() {
      for (String word : words) {
        collector.emit(new Values(word));
      }
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
      declarer.declare(new Fields("word"));
    }
  }

  public static class WordCountBolt extends BaseRichBolt {
    private OutputCollector collector;

    @Override
    public void prepare(Map<String, Object> conf, TopologyContext context, OutputCollector collector) {
      this.collector = collector;
    }

    @Override
    public void execute(Tuple tuple) {
      String word = tuple.getStringByField("word");
      Integer count = tuple.getIntegerByField("count");

      collector.emit(new Values(word, count + 1));
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
      declarer.declare(new Fields("word", "count"));
    }
  }
}

3. Apache Flink

Apache Flink 它是支持实时应用建设的统一流和批处理框架。它提供:

  • 低延迟
  • 高吞吐率
  • 状态管理

代码示例:

import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class FlinkExample {

  public static void main(String[] args) throws Exception {
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

    DataStream<String> dataStream = env.socketTextStream("localhost", 9000);

    dataStream.flatMap(value -> Arrays.asList(value.split(" "))).filter(word -> !word.isEmpty())
      .countWindowAll(10).sum(1).print();

    env.execute();
  }
}

使用这些框架,Java 为了实时响应大数据流,开发人员可以构建高效、可扩展的流式处理应用程序。

以上是java框架如何处理流式处理?详情请关注图灵教育其他相关文章!